Fracture Load of Implant-Supported Zirconia All-Ceramic Crowns Luted with Various Cements

Hyun-Pil Lim, DDS, PhDa/Jeong-Min Yoo, DDS, MSDb/Sang-Won Park, DDS, PhDc/Hong-So Yang, DDS, PhDd

This study compared the fracture load and failure types of implant-supported zirconia all-ceramic crowns cemented with various luting agents. The ceramic frameworks were fabricated from a presintered yttria-stabilized zirconium dioxide block using computer-aided design/computer-assisted manufacturing technology, and were then veneered with feldspathic porcelain. Three luting agents were used. Composite resin cement (1,560.78 ± 39.43 N) showed the highest mean fracture load, followed by acrylic/urethane cement (1,116.20 ± 77.32 N) and zinc oxide eugenol cement (741.21 ± 41.95 N) \((P < .05)\). The types of failure varied between groups. \textit{Int J Prosthodont} 2010;23:361–363.

Materials and Methods

Twenty-four abutments (Cemented abutment CAR535C, Osstem) were connected to implant analogs (FAR300, Osstem). The abutment-analog complexes were tightened to 35 Ncm and embedded in specimen holders perpendicular to the horizontal plane using autopolymerizing acrylic resin (Duralay, Reliance).

Ceramic frameworks of the mandibular first premolar were fabricated from a presintered yttria-stabilized zirconium dioxide block using computer-aided design/computer-assisted manufacturing technology (Everest ZS blank, KaVo). Each core had a thickness of 0.3 mm and a cement gap of 0.03 mm. After milling, the green bodies were sintered at 1,450°C for 8 hours. All copings were veneered (cusp tips and proximal contact points: 1.5 mm, central fossa: 1.2 mm, margin: 1.0 mm) and then glazed with feldspathic porcelain (Cerabien, Noritake). The thickness of the core and crown were regulated carefully and checked with calipers throughout the procedure.

The 24 crowns and corresponding abutment–analog complexes were divided randomly into three groups \((n = 8)\) and assigned to one of the following cement groups: zinc oxide eugenol cement (TempBond, Kerr), acrylic/urethane cement (Premier Implant Cement, Premier), and composite resin cement (RelayX Unicem, 3M ESPE) (Table 1).
The all-ceramic crown-abutment assemblies were exposed to 100,000 cycles of a mechanical load in a masticatory simulator. A load of 50 N was applied to the buccal cusp at a frequency of 1.3 Hz using a 4-mm-diameter ball. All specimens were subjected to 15,000 cycles of thermocycling between 5°C and 55°C for 10 seconds each, with an intermediate pause of 5 seconds.

Fracture tests were carried out using a universal testing machine at a constant crosshead speed of 0.1 µm/min. The compressive load (N) was centered on the central fossa of each crown, and the maximum load at failure was recorded for each specimen. The failure types were analyzed after the fracture load tests. The failure types were classified as either mixed fracture (zirconia coping fracture including a porcelain veneering layer fracture) or veneering fracture (fracture between layering porcelain and zirconia coping without zirconia core fracture) (Fig 1).

Data were analyzed using one-way analysis of variance (ANOVA) and the Tukey multiple comparison test. Statistical analysis was performed using SPSS version 12.00 (SPSS).

Results

Zinc oxide eugenol cement, acrylic/urethane cement, and composite resin cement had mean fracture loads of 741.21 ± 41.95 N, 1,116.20 ± 77.32 N, and 1,560.78 ± 39.43 N, respectively (Fig 2). One-way ANOVA showed that the type of cement had a significant influence on the fracture load values ($P < .05$). The between-group comparisons were significant according to the Tukey multiple comparison test ($P < .05$). All zinc oxide eugenol cement specimens exhibited fracture from the luting cement layer to the zirconia all-ceramic crown (mixed fracture), but the composite
resin cement specimens showed fracture at the interface between the luting cement and the zirconia core and in the zirconia all-ceramic crown (Table 2).

Discussion

The elastic modulus of the cements and their susceptibility to thermocycling may affect the fracture load under the experimental conditions of this study. The fracture resistance of monolithic ceramic restorations increased with increasing elastic modulus of the supporting substrate. The elastic modulus of TempBond, Premier Implant Cement, and Rely X Unicem were 0.22, 1.50, and 7.8 to 8.9 GPa, respectively. Zirconia coping fracture appears to be the result of the low elastic modulus and high displacement of the zinc oxide eugenol cement. However, the high elastic modulus and low displacement of the composite resin cement seems to inhibit zirconia coping fracture.

Conclusions

The type of cement had a significant effect on the fracture load of implant-supported zirconia all-ceramic crowns.

The fracture load of implant-supported zirconia all-ceramic crowns was highest with composite resin cement and lowest with zinc oxide cement.

In terms of failure type, all specimens in the zinc oxide cement group exhibited zirconia coping fracture.

Table 2 Distribution of the Failure Types for Each Study Group

<table>
<thead>
<tr>
<th></th>
<th>Mixed fracture (%)</th>
<th>Veneering fracture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc oxide eugenol</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>Acrylic/urethane</td>
<td>62.5</td>
<td>37.5</td>
</tr>
<tr>
<td>Composite resin</td>
<td>50.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

References

Oral Candida infection and colonization in solid organ transplant recipients

It has been reported that transplant recipients are more susceptible to Candida infection of the oropharynx. This study looked into the prevalence of oropharyngeal candidiasis, the oral carrier status, Candida titers, and species in this patient group. Over 1 year postoperatively, medically stable kidney and heart transplant individuals (n = 90) and age-matched healthy controls (n = 72) were involved in this study. Oral mucosa swabs and a standardized amount of saliva were plated on a culture media. Sizes of the colony-forming units were calculated. Speciation was determined based on color and was confirmed by standard germ tube, biotyping, or polymerase chain reaction assays. Results indicated that: (1) over the study period, 7 transplant individuals were infected with C albicans, none in the control group; (2) significantly higher Candida titers were noted in the transplant group; (3) no statistically significant relationships were established between the usage of of immunosuppressants and Candida titers or infection; (4) when compared with the control group, a significantly higher percentage of transplant subjects were colonized by more than one Candida species; (5) the most commonly found Candida species combination in transplant subjects was C albicans and C glabrata; and (6) C glabrata was found in 13.5% of transplant carriers, none in the control group. The authors concluded that oral Candida infection and titers were higher in the transplant group. Although the majority of transplant patients were colonized by C albicans, C glabrata was the second most commonly found species. In this study, infection was described as “clinical and microbiologic evidence of erythematous candidiasis on the dorsum of the tongue or hard palate, occasionally accompanied by a mild burning sensation.”

It would be interesting to see the significance of these infections with respect to the long-term outcomes of transplant patients.

References: 46.

Reprints: Anna Dongari-Bagtzoglou, 263 Farmington Avenue, Farmington, CT 06030. Email: adongari@uchc.edu—Ansgar C. Cheng

Literature Abstract